
Introduction
What is Sinatra?
Installation

Dependencies
Living on the Edge

Hello World Application
Real World Applications in Sinatra

Github Services
About this book
Need Help?

Getting to know Sinatra
It's Witchcraft
Routing
Filters

before
after
Pattern Matching

Handlers
Templates
Helpers

Organizing your application
Views

RSS Feed
CoffeeScript

Models
DataMapper

Helpers
Implementation of rails style partials

Middleware
Rack HTTP Basic Authentication

Testing
Using Rack::Test

Firing Requests
Modifying <code>env</code>
Cookies
Asserting Expectations About The Response
Optional Test Setup
Making <code>Rack::Test</code> available to all test cases

Development Techniques
Automatic Code Reloading

Shotgun
Deployment

Heroku
Contributing

There are plenty of ways to contribute to Sinatra.

Introduction

What is Sinatra?
Sinatra is a Domain Specific Language (DSL) for quickly creating web-applications in
Ruby.

It keeps a minimal feature set, leaving the developer to use the tools that best suit
them and their application.

It doesn't assume much about your application, apart from that:

it will be written in Ruby programming language
it will have URLs

In Sinatra, you can write short ad hoc applications or mature, larger application with the
same easiness.

You can use the power of various Rubygems and other libraries available for Ruby.

Sinatra really shines when used for experiments and application mock-ups or for
creating a quick interface for your code.

It isn't a typical Model-View-Controller framework, but ties specific URL directly to
relevant Ruby code and returns its output in response. It does enable you, however, to
write clean, properly organized applications: separating views from application code, for
instance.

Installation
The simplest way to install Sinatra is through Rubygems:

$ gem install sinatra

Dependencies
Sinatra depends on the Rack gem (http://rack.rubyforge.org).

Sinatra supports many different template engines (it uses the Tilt library internally to
support practically every template engine in Ruby) For optimal experience, you should
install the template engines you want to work with. The Sinatra dev team suggests
using either ERB, which is included with Ruby, or installing HAML as your first template
language.

$ gem install haml

Living on the Edge
The edge version of Sinatra lives in its Git repository, available at
http://github.com/sinatra/sinatra/tree/master.

You can use the edge version to try new functionality or to contribute to the framework.
You need to have Git version control software and bundler.

gem install bundler

To use Sinatra edge with bundler, you'll have to create a Gemfile listing Sinatra's and
any other dependencies you're going to need.

source :rubygems
gem 'sinatra', :git => 'git://github.com/sinatra/sinatra.git'

Here we use the gemcutter source to specify where to get Sinatra's dependencies;

http://rack.rubyforge.org
http://github.com/sinatra/sinatra/tree/master
http://www.git-scm.com
http://gembundler.com/

Here we use the gemcutter source to specify where to get Sinatra's dependencies;
alternatively you can use the git version, but that is up to you. So now we can install our
bundle:

bundle install

Hello World Application
Sinatra is installed, how about making your first application?

require 'rubygems'

If you're using bundler, you will need to add this
require 'bundler/setup'

require 'sinatra'

get '/' do
 "Hello world, it's #{Time.now} at the server!"
end

Run this application by $ ruby hello_world.rb and load http://localhost:4567 in your
browser.

As you can see, Sinatra doesn't force you to setup much infrastructure: a request to a
URL evaluates some Ruby code and returns some text in response. Whatever the block
returns is sent back to the browser.

Real World Applications in Sinatra

Github Services
Git hosting provider Github uses Sinatra for post-receive hooks, calling user specified
services/URLs, whenever someone pushes to their repository:

http://github.com/blog/53-github-services-ipo
http://github.com/guides/post-receive-hooks
http://github.com/pjhyett/github-services

Check out a full list of Sinatra apps in the wild.

About this book
This book will assume you have a basic knowledge of the Ruby scripting language and a
working Ruby interpreter.

For more information about the Ruby language visit the following links:

ruby-lang
ruby-lang / documentation

Need Help?
The Sinatra club is small, but super-friendly. Join us on IRC at irc.freenode.org in
#sinatra if you have any questions. It's a bit slow at times, so give us a bit to get back
to your questions.

http://github.com/blog/53-github-services-ipo
http://github.com/guides/post-receive-hooks
http://github.com/pjhyett/github-services
http://www.sinatrarb.com/wild.html
http://www.ruby-lang.org
http://www.ruby-lang.org/en/documentation/

Getting to know Sinatra

It's Witchcraft
You saw in the introduction how to install Sinatra, its dependencies, and write a small
"hello world" application. In this chapter you will get a whirlwind tour of the framework
and familiarize yourself with its features.

Routing
Sinatra is super flexible when it comes to routing, which is essentially an HTTP method
and a regular expression to match the requested URL. The four basic HTTP request
methods will get you a long ways:

GET
POST
PUT
DELETE

Routes are the backbone of your application, they're like a guide-map to how users will
navigate the actions you define for your application.

They also enable to you create RESTful web services, in a very obvious manner. Here's
an example of how one-such service might look:

get '/dogs' do
 # get a listing of all the dogs
end

get '/dog/:id' do
 # just get one dog, you might find him like this:
 @dog = Dog.find(params[:id])
 # using the params convention, you specified in your route
end

post '/dog' do
 # create a new dog listing
end

put '/dog/:id' do
 # HTTP PUT request method to update an existing dog
end

delete '/dog/:id' do
 # HTTP DELETE request method to remove a dog who's been sold!
end

As you can see from this contrived example, Sinatra's routing is very easy to get along
with. Don't be fooled, though, Sinatra can do some pretty amazing things with Routes.

Take a more in-depth look at Sinatra's routes, and see for yourself.

Filters
Sinatra offers a way for you too hook into the request chain of your application via
Filters.

Filters define two methods available, before and after which both accept a block to

http://en.wikipedia.org/wiki/Representational_State_Transfer#RESTful_web_services
http://www.sinatrarb.com/intro#Routes
http://www.sinatrarb.com/intro#Filters

yield corresponding the request and optionally take a URL pattern to match to the
request.

before
The before method will let you pass a block to be evaluated before each and every
route gets processed.

before do
 MyStore.connect unless MyStore.connected?
end

get '/' do
 @list = MyStore.find(:all)
 erb :index
end

In this example, we've set up a before filter to connect using a contrived MyStore
module.

after
The after method lets you pass a block to be evaluated after each and every route
gets processed.

after do
 MyStore.disconnect
end

As you can see from this example, we're asking the MyStore module to disconnect after
the request has been processed.

Pattern Matching
Filters optionally take a pattern to be matched against the requested URI during
processing. Here's a quick example you could use to run a contrived authenticate!
method before accessing any "admin" type requests.

before '/admin/*' do
 authenticate!
end

Handlers
Handlers are top-level methods available in Sinatra to take care of common HTTP
routines. For instance there are handlers for halting and passing.

There are also handlers for redirection:

get '/' do
 redirect '/someplace/else'
end

This will return a 302 HTTP Response to /someplace/else.

You can even use the Sinatra handler for sessions, just add this to your application or to

http://www.sinatrarb.com/intro#Halting
http://www.sinatrarb.com/intro#Passing

You can even use the Sinatra handler for sessions, just add this to your application or to
a configure block:

enable :sessions

Then you will be able to use the default cookie based session handler in your
application:

get '/' do
 session['counter'] ||= 0
 session['counter'] += 1
 "You've hit this page #{session['counter']} times!"
end

Handlers can be extremely useful when used properly, probably the most common use
is the params convention, which gives you access to any parameters passed in via the
request object, or generated in your route pattern.

Templates
Sinatra is built upon an incredibly powerful templating engine, Tilt. Which, is designed
to be a "thin interface" for frameworks that want to support multiple template engines.

Some of Tilt's other all-star features include:

Custom template evaluation scopes / bindings
Ability to pass locals to template evaluation
Support for passing a block to template evaluation for "yield"
Backtraces with correct filenames and line numbers
Template file caching and reloading

And includes support for some of the best engines available, such as HAML, Less CSS,
and coffee-script.

All you need to get started is erb, which is included in Ruby. Views by default look in the
views directory in your application root.

So in your route you would have:

get '/' do
 erb :index
 # renders views/index.erb

 # OR look in a sub-directory

 erb :"dogs/index"
 # would instead render views/dogs/index.erb
end

Another default convention of Sinatra, is the layout, which automatically looks for a
views/layout template file to render before loading any other views. In the case of using
erb, your views/layout.erb would look something like this:

<html>
 <head>..</head>
 <body>
 <%= yield %>

http://github.com/rtomayko/tilt
http://haml-lang.com/
http://lesscss.org/
http://jashkenas.github.com/coffee-script/

 <%= yield %>
 </body>
</html>

The possibilities are pretty much endless, here's a quick list of some of the most
common use-cases covered in the README:

Inline Templates
Embedded Templates
Named Templates

For more specific details on how Sinatra handles templates, check the README.

Helpers
Helpers are a great way to provide reusable code snippets in your application.

helpers do
 def bar(name)
 "#{name}bar"
 end
end

get '/:name' do
 bar(params[:name])
end

Organizing your application

Views

RSS Feed
The builder gem/library for creating XML is required in this recipe.

Assume that your site url is http://liftoff.msfc.nasa.gov/.

get '/rss.xml' do
 builder do |xml|
 xml.instruct! :xml, :version => '1.0'
 xml.rss :version => "2.0" do
 xml.channel do
 xml.title "Liftoff News"
 xml.description "Liftoff to Space Exploration."
 xml.link "http://liftoff.msfc.nasa.gov/"

 @posts.each do |post|
 xml.item do
 xml.title post.title
 xml.link "http://liftoff.msfc.nasa.gov/posts/#{post.id}"
 xml.description post.body
 xml.pubDate Time.parse(post.created_at.to_s).rfc822()
 xml.guid "http://liftoff.msfc.nasa.gov/posts/#{post.id}"
 end
 end
 end

http://www.sinatrarb.com/intro#Inline Templates
http://www.sinatrarb.com/intro#Embedded Templates
http://www.sinatrarb.com/intro#Named Templates
http://www.sinatrarb.com/intro#Views / Templates
http://builder.rubyforge.org/

 end
 end
 end
end

This will render the RSS inline, directly from the handler.

CoffeeScript
To render CoffeeScript templates you first need the coffee-script gem and
therubyracer, or access to the coffee binary.

Here's an example of using CoffeeScript with Sinatra's template rendering engine Tilt:

You'll need to require coffee-script in your app
require 'coffee-script'

get '/application.js' do
 coffee :application
end

Renders ./views/application.coffee.

This works great if you have access to nodejs or therubyracer gem on your platform of
choice and hosting environment. If that's not the case, but you'd still like to use
CoffeeScript, you can precompile your scripts using the coffee binary:

coffee -c -o public/javascripts/ src/

Or you can use this example rake task to compile them for you with the coffee-script
gem, which can use either therubyracer gem or the coffee binary:

require 'coffee-script'

namespace :js do
 desc "compile coffee-scripts from ./src to ./public/javascripts"
 task :compile do
 source = "#{File.dirname(__FILE__)}/src/"
 javascripts = "#{File.dirname(__FILE__)}/public/javascripts/"

 Dir.foreach(source) do |cf|
 unless cf == '.' || cf == '..'
 js = CoffeeScript.compile File.read("#{source}#{cf}")
 open "#{javascripts}#{cf.gsub('.coffee', '.js')}", 'w' do |f|
 f.puts js
 end
 end
 end
 end
end

Now, with this rake task you can compile your coffee-scripts to public/javascripts by
using the rake js:compile command.

Resources

http://nodejs.org/
http://rake.rubyforge.org/

If you get stuck or want to look into other ways of implementing CoffeeScript in your
application, these are a great place to start:

coffee-script
therubyracer
ruby-coffee-script

Models

DataMapper
Start out by getting the DataMapper gem if you don't already have it, and then making
sure it's in your application. A call to setup as usual will get the show started, and this
example will include a 'Post' model.

require 'rubygems'
require 'sinatra'
require 'data_mapper' # metagem, requires common plugins too.

need install dm-sqlite-adapter
DataMapper::setup(:default, "sqlite3://#{Dir.pwd}/blog.db")

class Post
 include DataMapper::Resource
 property :id, Serial
 property :title, String
 property :body, Text
 property :created_at, DateTime
end

Perform basic sanity checks and initialize all relationships
Call this when you've defined all your models
DataMapper.finalize

automatically create the post table
Post.auto_upgrade!

Once that is all well and good, you can actually start developing your application!

get '/' do
 # get the latest 20 posts
 @posts = Post.all(:order => [:id.desc], :limit => 20)
 erb :index
end

Finally, the view at ./view/index.html:

<% @posts.each do |post| %>
 <h3><%= post.title %></h3>
 <p><%= post.body %></p>
<% end %>

For more information on DataMapper, check out the project documentation.

http://coffeescript.org/
http://github.com/cowboyd/therubyracer
http://github.com/josh/ruby-coffee-script
http://datamapper.org/docs/

Helpers

Implementation of rails style partials
Using partials in your views is a great way to keep them clean. Since Sinatra takes the
hands off approach to framework design, you'll have to implement a partial handler
yourself.

Here is a really basic version:

Usage: partial :foo
helpers do
 def partial(page, options={})
 haml page, options.merge!(:layout => false)
 end
end

A more advanced version that would handle passing local options, and looping over a
hash would look like:

Render the page once:
Usage: partial :foo

foo will be rendered once for each element in the array, passing in a local
variable named "foo"
Usage: partial :foo, :collection => @my_foos

helpers do
 def partial(template, *args)
 options = args.extract_options!
 options.merge!(:layout => false)
 if collection = options.delete(:collection) then
 collection.inject([]) do |buffer, member|
 buffer << haml(template, options.merge(
 :layout => false,
 :locals => {template.to_sym => member}
)
)
 end.join("\n")
 else
 haml(template, options)
 end
 end
end

Middleware

Sinatra rides on Rack, a minimal standard interface for Ruby web frameworks. One of
Rack’s most interesting capabilities for application developers is support for
"middleware" -- components that sit between the server and your application
monitoring and/or manipulating the HTTP request/response to provide various types of
common functionality.

Sinatra makes building Rack middleware pipelines a cinch via a top-level use method:

http://rack.rubyforge.org/

require 'sinatra'
require 'my_custom_middleware'

use Rack::Lint
use MyCustomMiddleware

get '/hello' do
 'Hello World'
end

Rack HTTP Basic Authentication
The semantics of "use" are identical to those defined for the Rack::Builder DSL (most
frequently used from rackup files). For example, the use method accepts
multiple/variable args as well as blocks:

use Rack::Auth::Basic do |username, password|
 username == 'admin' && password == 'secret'
end

Rack is distributed with a variety of standard middleware for logging, debugging, URL
routing, authentication, and session handling. Sinatra uses many of of these
components automatically based on configuration so you typically don’t have to use
them explicitly.

Testing

Using Rack::Test
Testing is an integral part of software development. In this section we will look into
testing the Sinatra application itself. For unit testing your models or other classes,
please consult the documentation of frameworks used (including your test framework
itself). Sinatra itself uses Contest for testing, but feel free to use any framework you
like.

Bryan Helmkamp's Rack::Test offers tools for mocking Rack request, sending those to
your application and inspecting the response all wrapped in a small DSL.

Firing Requests
You import the DSL by including Rack::Test::Methods into your test framework. It is
even usable without a framework and for other tasks besides testing.

Imagine you have an application like this:

myapp.rb
require 'sinatra'

get '/' do
 "Welcome to my page!"
end

post '/' do
 "Hello #{params[:name]}!"
end

http://rack.rubyforge.org/doc/classes/Rack/Builder.html
https://github.com/brynary/rack-test

You have to define an app method pointing to your application class (which is
Sinatra::Application per default):

begin
 # try to use require_relative first
 # this only works for 1.9
 require_relative 'my-app.rb'
rescue NameError
 # oops, must be using 1.8
 # no problem, this will load it then
 require File.expand_path('my-app.rb', __FILE__)
end

require 'test/unit'
require 'rack/test'

class MyAppTest < Test::Unit::TestCase
 include Rack::Test::Methods

 def app
 Sinatra::Application
 end

 def test_my_default
 get '/'
 assert last_response.ok?
 assert_equal 'Welcome to my page!', last_response.body
 end

 def test_with_params
 post '/', :name => 'Frank'
 assert_equal 'Hello Frank!', last_response.body
 end
end

Modifying env
While parameters can be send via the second argument of a get/post/put/delete call
(see the post example above), the env hash (and thereby the HTTP headers) can be
modified with a third argument:

get '/foo', {}, 'HTTP_USER_AGENT' => 'Songbird 1.0'

This also allows passing internal env settings:

get '/foo', {}, 'rack.session' => { 'user_id' => 20 }

Cookies
For example, add the following to your app to test against:

"Hello #{request.cookies['foo']}!"

Use set_cookie for setting and removing cookies, and the access them in your response:

response.set_cookie 'foo=bar'

get '/'
assert_equal 'Hello bar!', last_response.body

Asserting Expectations About The Response
Once a request method has been invoked, the following attributes are available for
making assertions:

app - The Sinatra application class that handled the mock request.

last_request - The Rack::MockRequest used to generate the request.

last_response - A Rack::MockResponse instance with information on the response
generated by the application.

Assertions are typically made against the last_response object. Consider the following
examples:

def test_it_says_hello_world
 get '/'
 assert last_response.ok?
 assert_equal 'Hello World'.length.to_s, last_response.headers['Content-
Length']
 assert_equal 'Hello World', last_response.body
end

Optional Test Setup
The Rack::Test mock request methods send requests to the return value of a method
named app.

If you're testing a modular application that has multiple Sinatra::Base subclasses,
simply set the app method to return your particular class.

 def app
 MySinatraApp
 end

If you're using a classic style Sinatra application, then you need to return an instance of
Sinatra::Application.

 def app
 Sinatra::Application
 end

Making Rack::Test available to all test cases
If you'd like the Rack::Test methods to be available to all test cases without having to
include it each time, you can include the Rack::Test module in the Test::Unit::TestCase
class:

require 'test/unit'
require 'rack/test'

class Test::Unit::TestCase
 include Rack::Test::Methods

http://rdoc.info/gems/rack/1.2.1/frames/Rack/MockRequest
http://rdoc.info/gems/rack/1.2.1/frames/Rack/MockResponse

end

Now all TestCase subclasses will automatically have Rack::Test available to them.

Development Techniques

Automatic Code Reloading
Restarting an application manually after every code change is both slow and painful. It
can easily be avoided by using a tool for automatic code reloading.

Shotgun
Shotgun will actually restart your application on every request. This has the advantage
over other reloading techniques of always producing correct results. However, since it
actually restarts your application, it is rather slow compared to the alternatives.
Moreover, since it relies on fork, it is not available on Windows and JRuby.

Usage is rather simple:

gem install shotgun # run only once, to install shotgun
shotgun my_app.rb

If you want to run a modular application, create a file named config.ru with similar
content:

require 'my_app'
run MyApp

And run it by calling shotgun without arguments.

The shotgun executable takes arguments similar to those of the rackup command, run
shotgun --help for more information.

Deployment

Heroku
This is the easiest configuration + deployment option. Heroku has full support for
Sinatra applications. Deploying to Heroku is simply a matter of pushing to a remote git
repository.

Steps to deploy to Heroku:

Create an account if you don't have one
gem install heroku

Make a config.ru in the root-directory
Create the app on heroku
Push to it

1. Here is an example config.ru file that does two things. First, it requires your main
app file, whatever it's called. In the example, it will look for myapp.rb. Second, run
your application. If you're subclassing, use the subclass's name, otherwise use

http://www.heroku.com
http://heroku.com/signup

your application. If you're subclassing, use the subclass's name, otherwise use
Sinatra::Application.

require "myapp"

run Sinatra::Application

2. Create the app and push to it

From the root-directory of the application

$ heroku create # This will add heroku as a remote $ git push heroku master

For more details see this

Contributing

There are plenty of ways to contribute to Sinatra.
Got a recipe or tutorial? Check out the Sinatra Recipes project for all of the recent
additions from the community.

If you're looking for something to work on be sure to check the issue tracker. Once you
have forked the project, feel free to send us a pull request.

Check the wiki for more information.

Join us on IRC (#sinatra at irc.freenode.org) if you need help with anything.

http://github.com/sinatra/heroku-sinatra-app
http://www.sinatrarb.com/contributing
http://github.com/sinatra/sinatra-recipes
http://github.com/sinatra/sinatra-book/issues
http://help.github.com/forking/
http://help.github.com/pull-requests/
http://github.com/sinatra/sinatra-book/wiki/How-to-contribute

	Introduction
	What is Sinatra?
	Installation
	Dependencies
	Living on the Edge

	Hello World Application
	Real World Applications in Sinatra
	Github Services

	About this book
	Need Help?

	Getting to know Sinatra
	It's Witchcraft
	Routing
	Filters
	before
	after
	Pattern Matching

	Handlers
	Templates
	Helpers

	Organizing your application
	Views
	RSS Feed
	CoffeeScript

	Models
	DataMapper

	Helpers
	Implementation of rails style partials

	Middleware
	Rack HTTP Basic Authentication

	Testing
	Using Rack::Test
	Firing Requests
	Modifying env
	Cookies
	Asserting Expectations About The Response
	Optional Test Setup
	Making Rack::Test available to all test cases

	Development Techniques
	Automatic Code Reloading
	Shotgun

	Deployment
	Heroku

	Contributing
	There are plenty of ways to contribute to Sinatra.

